Co-Training Based Bilingual Sentiment Lexicon Learning
نویسندگان
چکیده
In this paper, we address the issue of bilingual sentiment lexicon learning(BSLL) which aims to automatically and simultaneously generate sentiment words for two languages. The underlying motivation is that sentiment information from two languages can perform iterative mutual-teaching in the learning procedure. We propose to develop two classifiers to determine the sentiment polarities of words under a co-training framework, which makes full use of the two-view sentiment information from the two languages. The word alignment derived from the parallel corpus is leveraged to design effective features and to bridge the learning of the two classifiers. The experimental results on English and Chinese languages show the effectiveness of our approach in BSLL.
منابع مشابه
Bilingual Co-Training for Sentiment Classification of Chinese Product Reviews
The lack of reliable Chinese sentiment resources limits research progress on Chinese sentiment classification. However, there are many freely available English sentiment resources on the Web. This article focuses on the problem of cross-lingual sentiment classification, which leverages only available English resources for Chinese sentiment classification. We first investigate several basic meth...
متن کاملCross-lingual Sentiment Lexicon Learning With Bilingual Word Graph Label Propagation
In this article we address the task of cross-lingual sentiment lexicon learning, which aims to automatically generate sentiment lexicons for the target languages with available English sentiment lexicons. We formalize the task as a learning problem on a bilingual word graph, in which the intra-language relations among the words in the same language and the interlanguage relations among the word...
متن کاملLCCT: A Semi-supervised Model for Sentiment Classification
Analyzing public opinions towards products, services and social events is an important but challenging task. An accurate sentiment analyzer should take both lexicon-level information and corpus-level information into account. It also needs to exploit the domainspecific knowledge and utilize the common knowledge shared across domains. In addition, we want the algorithm being able to deal with mi...
متن کاملLost in Translations? Building Sentiment Lexicons using Context Based Machine Translation
In this paper, we propose a simple yet efective approach to automatically building sentiment lexicons from English sentiment lexicons using publicly available online machine translation services. The method does not rely on any semantic resources or bilingual dictionaries, and can be applied to many languages. We propose to overcome the low coverage problem through putting each English sentimen...
متن کاملBilingual Sentiment Consistency for Statistical Machine Translation
In this paper, we explore bilingual sentiment knowledge for statistical machine translation (SMT). We propose to explicitly model the consistency of sentiment between the source and target side with a lexicon-based approach. The experiments show that the proposed model significantly improves Chinese-to-English NIST translation over a competitive baseline.
متن کامل